A test for stability robustness of linear time-varying systems utilizing the linear time-invariant [nu]-gap metric

نویسندگان

  • Wynita M. Griggs
  • Alexander Lanzon
  • Brian D. O. Anderson
چکیده

A stability robustness test is developed for internally stable, nominal, linear time-invariant (LTI) feedback systems subject to structured, linear time-varying uncertainty. There exists (in the literature) a necessary and sufficient structured small gain condition that determines robust stability in such cases. In this paper, the structured small gain theorem is utilized to formulate a (sufficient) stability robustness condition in a scaled LTI -gap metric framework. The scaled LTI -gap metric stability condition is shown to be computable via linear matrix inequality techniques, similar to the structured small gain condition. Apart from a comparison with a generalized robust stability margin as the final part of the stability test, however, the solution algorithm implemented to test the scaled LTI -gap metric stability robustness condition is shown to be independent of knowledge about the controller transfer function (as opposed to the LMI feasibility problem associated with the scaled small gain condition which is dependent on knowledge about the controller). Thus, given a nominal plant and a structured uncertainty set, the stability robustness condition presented in this paper provides a single constraint on a controller (in terms of a large enough generalized robust stability margin) that (sufficiently) guarantees to stabilize all plants in the uncertainty set. Copyright q 2008 John Wiley & Sons, Ltd.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive fuzzy pole placement for stabilization of non-linear systems

A new approach for pole placement of nonlinear systems using state feedback and fuzzy system is proposed. We use a new online fuzzy training method to identify and to obtain a fuzzy model for the unknown nonlinear system using only the system input and output. Then, we linearized this identified model at each sampling time to have an approximate linear time varying system. In order to stabilize...

متن کامل

Robust stability properties of the υ-gap metric for time-varying systems

The stability of uncertain feedback interconnections of causal time-varying linear systems is studied in terms of a recently established generalisation of the ν-gap metric. In particular, a number of robustness results from the wellknown linear time-invariant theory are extended. The timevarying generalisations include: sufficient conditions for robust stability; a bound on robust performance; ...

متن کامل

Robust gain-scheduled control of linear parameter-varying systems with uncertain scheduling parameters in the presence of the time-invariant uncertainties

In this paper, a new approach is presented to design a gain-scheduled state-feedback controller for uncertain linear parameter-varying systems. It is supposed that the state-space matrices of them are the linear combination of the uncertain scheduling parameters. It is assumed that the existed uncertainties are of type of time-invariant parametric uncertainties with specified intervals. Simulta...

متن کامل

Optimal Finite-time Control of Positive Linear Discrete-time Systems

This paper considers solving optimization problem for linear discrete time systems such that closed-loop discrete-time system is positive (i.e., all of its state variables have non-negative values) and also finite-time stable. For this purpose, by considering a quadratic cost function, an optimal controller is designed such that in addition to minimizing the cost function, the positivity proper...

متن کامل

Analysis on the Time–varying Gap of Discrete Time–varying Linear Systems

This paper is devoted to give some analysis on the time-varying (TV) gap of discrete time-varying linear systems in the frame work of nest algebra. It is shown that the TV gap has no advantage over gap metric in stability and robustness analysis on the single-sided discrete time-axis N , while it stands out on the whole time-axis Z . Mathematics subject classification (2010): 47L35, 47N70.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009